Gathering Data rather than Opinions ...

4 Views· 08/19/23
Foundations of Amateur Radio
0

Foundations of Amateur Radio There's nothing quite as satisfying as the click of a well designed piece of equipment. It's something that tickles the brain and done well it makes the hairs stand up on the back of your neck. If time was on my side and I wasn't going somewhere else with this, I'd now regale you with research on the phenomenon, I'd explore the community of people building mechanical keyboards and those who restore equipment to their former glory, instead I'm encouraging you to dig whilst I talk about the second and third harmonics. This is about amateur radio after all. Over the years there has been a steady stream of commentary around the quality of handheld radios. Some suggest that the cheaper the radio, the worse it is. Given that these kinds of radios are often the very first purchase for an aspiring amateur it would be useful to have a go at exploring this. When a radio is designed the aim is for it to transmit exactly where it's intended to and only there. Any transmission that's not where you plan is considered a spurious emission. By carefully designing a circuit, by adding shielding, by filtering and other techniques these spurious emissions can be reduced or eliminated, but this costs money, either in the design stage, or in the cost of materials and manufacturing. It's logical to think that the cheaper the radio, the worse it is, but is it really true that a cheap radio has more spurious emissions than an expensive one? To give you an example of a spurious emission, consider an FM transmitter tuned to the 2m amateur band, let's say 146.5 MHz. If you key the radio and all is well, the radio will only transmit at that frequency, but that's not always the case. It turns out that if you were to listen on 293 MHz, you might discover that your radio is also transmitting there. If you're familiar with the amateur radio band plan, you'll know that 293 MHz is not allocated as an amateur frequency, so we're not allowed to transmit there, in fact, in Australia that frequency is reserved for the Australian Department of Defence, and there's an additional exclusion for the Murchison Radio-astronomy Observatory. 293 MHz isn't a random frequency. It's twice 146.5 MHz and it's called the second harmonic. There's more. If you multiply the base frequency by three, you end up at 439.5 MHz, the third harmonic. In Australia, that frequency falls into the amateur allocation as a second use, its primary use is again the Department of Defence. These two transmissions are examples of spurious emissions. To be clear, the transmitter is tuned to 146.5 MHz and these unintended extra signals come out of the radio at the same time. This is bad for several reasons, legal and otherwise. The first, obvious one, is that you're transmitting out of band, which as an amateur you already have no excuse for, since getting your license requires you to understand that this is strictly not allowed. The International Telecommunications Union, or ITU, has specific requirements for what's permitted in the way of spurious emissions from an amateur station. Spurious emissions also mean that there is energy being wasted. Instead of the signal only coming out at the intended frequency, some of it is appearing elsewhere, making the 5 Watts you paid for less effective than you hoped for. So, what's this got to do with the click I started with? Well, thanks to Randall, VK6WR, I have on loan a heavy box with a Cathode Ray Tube or Green CRT screen, lots of buttons and knobs and the ability to measure such spurious emissions. It's marked "HP 8920A RF Communications Test Set". Using this equipment is very satisfying. You switch it on and a fan starts whirring. After a moment you hear a beep, then the screen announces itself, almost as-if there's a PC in there somewhere - turns out that there is and the beep is the Power On Self Test, or POST beep. Originally released in 1992, this magic box can replace 22

Show more

 0 Comments sort   Sort By


Up next