DR. MERTENS: CREATED A SYNTHETIC BLACK HOLE THAT RADIATES

0 Views· 06/28/23
Science Society
Science Society
0 Subscribers
0

Our speaker, Dr. Mertens, discusses in-depth ground-state thermalization due to instantaneous horizon creation in a gravitational setting and its condensed matter analog. Dr. Mertens sheds light on the implications of a sudden change in position-dependent hopping amplitudes in a one-dimensional lattice model, leading to the emergence of a thermal state that accompanies the formation of a synthetic horizon. Throughout the discussion, we unravel the striking parallelism between the resulting temperature for long chains and the Unruh temperature, given that the post-quench Hamiltonian matches the entanglement Hamiltonian of the pre-quench system. We analyze the outgoing radiation from these synthetic horizons and formulate the conditions required for these horizons to behave as a purely thermal source. This podcast episode offers a unique opportunity to learn more about the interplay between quantum-mechanical and gravitational aspects and to understand how these complex ideas might be tested in a laboratory setting. An absolute must-listen for anyone intrigued by the junction of quantum mechanics and gravity and eager to keep up with the latest theoretical developments in the field. DOI: 10.1103/PhysRevResearch.4.043084

Show more

 0 Comments sort   Sort By


Up next