- After-Shows
- Alternative
- Animals
- Animation
- Arts
- Astronomy
- Automotive
- Aviation
- Baseball
- Basketball
- Beauty
- Books
- Buddhism
- Business
- Careers
- Chemistry
- Christianity
- Climate
- Comedy
- Commentary
- Courses
- Crafts
- Cricket
- Cryptocurrency
- Culture
- Daily
- Design
- Documentary
- Drama
- Earth
- Education
- Entertainment
- Entrepreneurship
- Family
- Fantasy
- Fashion
- Fiction
- Film
- Fitness
- Food
- Football
- Games
- Garden
- Golf
- Government
- Health
- Hinduism
- History
- Hobbies
- Hockey
- Home
- How-To
- Improv
- Interviews
- Investing
- Islam
- Journals
- Judaism
- Kids
- Language
- Learning
- Leisure
- Life
- Management
- Manga
- Marketing
- Mathematics
- Medicine
- Mental
- Music
- Natural
- Nature
- News
- Non-Profit
- Nutrition
- Parenting
- Performing
- Personal
- Pets
- Philosophy
- Physics
- Places
- Politics
- Relationships
- Religion
- Reviews
- Role-Playing
- Rugby
- Running
- Science
- Self-Improvement
- Sexuality
- Soccer
- Social
- Society
- Spirituality
- Sports
- Stand-Up
- Stories
- Swimming
- TV
- Tabletop
- Technology
- Tennis
- Travel
- True Crime
- Episode-Games
- Visual
- Volleyball
- Weather
- Wilderness
- Wrestling
- Other
DR. MERTENS: CREATED A SYNTHETIC BLACK HOLE THAT RADIATES
Our speaker, Dr. Mertens, discusses in-depth ground-state thermalization due to instantaneous horizon creation in a gravitational setting and its condensed matter analog. Dr. Mertens sheds light on the implications of a sudden change in position-dependent hopping amplitudes in a one-dimensional lattice model, leading to the emergence of a thermal state that accompanies the formation of a synthetic horizon. Throughout the discussion, we unravel the striking parallelism between the resulting temperature for long chains and the Unruh temperature, given that the post-quench Hamiltonian matches the entanglement Hamiltonian of the pre-quench system. We analyze the outgoing radiation from these synthetic horizons and formulate the conditions required for these horizons to behave as a purely thermal source. This podcast episode offers a unique opportunity to learn more about the interplay between quantum-mechanical and gravitational aspects and to understand how these complex ideas might be tested in a laboratory setting. An absolute must-listen for anyone intrigued by the junction of quantum mechanics and gravity and eager to keep up with the latest theoretical developments in the field. DOI: 10.1103/PhysRevResearch.4.043084